The comma operator is commonly used to separate variable declarations, function arguments, and expressions, as well as the elements of a for statement. Look closely at the following program, which shows some of the many ways a comma can be used:
#include <stdio.h>
#include <stdlib.h>
void main(void);
void main()
{
int i, j, k;
i = 0, j = 1, k = 2;
printf("i = %d, j = %d, k = %d\n", i, j, k);
i = (j++, k++);
printf("i = %d, j = %d, k = %d\n", i, j, k);
while (i = (rand() % 100), i != 50)
printf("i is %d, trying again...\n", i);
printf("\nGuess what? i is 50!\n");
}
Notice the line that reads
i = (j++, k++);
This line actually performs three actions at once. These are the three actions, in order:
1. Assigns the value of k to i. This happens because the left value (lvalue) always evaluates to the rightmost argument. In this case, it evaluates to k. Notice that it does not evaluate to k++, because k++ is a postfix incremental expression, and k is not incremented until the assignment of k to i is made. If the expression had read ++k, the value of ++k would be assigned to i because it is a prefix incremental expression, and it is incremented before the assignment is made.
2. Increments j.
3. Increments k.
Also, notice the strange-looking while statement:
while (i = (rand() % 100), i != 50)
printf("i is %d, trying again...\n");
Here, the comma operator separates two expressions, each of which is evaluated for each iteration of the while statement. The first expression, to the left of the comma, assigns i to a random number from 0 to 99.
The second expression, which is more commonly found in a while statement, is a conditional expression that tests to see whether i is not equal to 50. For each iteration of the while statement, i is assigned a new random number, and the value of i is checked to see that it is not 50. Eventually, i is randomly assigned the value 50, and the while statement terminates.