0 votes
in Python by
Explain numpy.ones_like() in Python

1 Answer

0 votes
by
numpy.ones_like() in Python

The one_like() method of Python numpy class returns an array of ones with the same shape and type as the specified array.

Syntax

numpy.ones_like(a, dtype=None, order='K', subok=True)

Parameter

The numpy.ones_like() method consists of four parameters, which are as follows:

arrray : It indicates the array_like input.

subok  : It is an optional Boolean argument that is used to make a subclass of type ‘a’ or not. By default, it is true.

order  : The order parameter can be either C_contiguous or F_contiguous. C order means that operating row-rise on the array will be slightly quicker

FORTRAN-contiguous order in memory (the first index varies the fastest). F order means that column-wise operations will be faster.

dtype  : It is an optional parameter. It depicts the data type of returned array, and by default, it is a float.

Return

This method returns the array with the specified shape, order and datatype.

Example 1

# Python Programming giving an example for

# numpy.ones_like() method

import numpy as numpy

array = numpy.arange(10).reshape(5, 2)

print("Original array : \n", array)

a = numpy.ones_like(array, float)

print("\nMatrix : \n", a)

array = numpy.arange(8)

b = numpy.ones_like(array)

print("\nMatrix : \n", b)

Output

Original array :

[[0 1]

[2 3]

[4 5]

[6 7]

[8 9]]

Matrix :

[[ 1.  1.]

[ 1.  1.]

[ 1.  1.]

[ 1.  1.]

[ 1.  1.]]

Matrix :

[1 1 1 1 1 1 1 1]
...