• Home
  • Recent Q&A
  • Java
  • Cloud
  • JavaScript
  • Python
  • SQL
  • PHP
  • HTML
  • C++
  • Data Science
  • DBMS
  • Devops
  • Hadoop
  • Machine Learning
in Data Science by
Q:
What are the feature selection methods used to select the right variables?

1 Answer

0 votes
by

There are two main methods for feature selection, i.e, filter, and wrapper methods.

  1. Filter Methods

This involves: 

  • Linear discrimination analysis
  • ANOVA
  • Chi-Square

The best analogy for selecting features is "bad data in, bad answer out." When we're limiting or selecting the features, it's all about cleaning up the data coming in. 

2. Wrapper Methods

This involves: 

  • Forward Selection: We test one feature at a time and keep adding them until we get a good fit
  • Backward Selection: We test all the features and start removing them to see what works better
  • Recursive Feature Elimination: Recursively looks through all the different features and how they pair together

Wrapper methods are very labor-intensive, and high-end computers are needed if a lot of data analysis is performed with the wrapper method. 

Related questions

0 votes
asked May 29, 2019 in Machine Learning by param1987
+1 vote
asked Jan 28, 2021 in HTML by SakshiSharma
...