Categories

Jan 8 in Big Data | Hadoop
Q: Inputs and Outputs MapReduce

1 Answer

Jan 8

Source Code

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

Usage

Assuming environment variables are set as follows:

export JAVA_HOME=/usr/java/default
export PATH=${JAVA_HOME}/bin:${PATH}
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

Compile WordCount.java and create a jar:

$ bin/hadoop com.sun.tools.javac.Main WordCount.java
$ jar cf wc.jar WordCount*.class

Assuming that:

  • /user/joe/wordcount/input - input directory in HDFS
  • /user/joe/wordcount/output - output directory in HDFS

Sample text-files as input:

$ bin/hadoop fs -ls /user/joe/wordcount/input/
/user/joe/wordcount/input/file01
/user/joe/wordcount/input/file02

$ bin/hadoop fs -cat /user/joe/wordcount/input/file01
Hello World Bye World

$ bin/hadoop fs -cat /user/joe/wordcount/input/file02
Hello Hadoop Goodbye Hadoop

Run the application:

$ bin/hadoop jar wc.jar WordCount /user/joe/wordcount/input /user/joe/wordcount/output

Output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

Applications can specify a comma separated list of paths which would be present in the current working directory of the task using the option -files. The -libjars option allows applications to add jars to the classpaths of the maps and reduces. The option -archives allows them to pass comma separated list of archives as arguments. These archives are unarchived and a link with name of the archive is created in the current working directory of tasks. More details about the command line options are available at Commands Guide.

Running wordcount example with -libjars, -files and -archives:

bin/hadoop jar hadoop-mapreduce-examples-<ver>.jar wordcount -files cachefile.txt -libjars mylib.jar -archives myarchive.zip input output

Here, myarchive.zip will be placed and unzipped into a directory by the name “myarchive.zip”.

Users can specify a different symbolic name for files and archives passed through -files and -archives option, using #.

For example,

bin/hadoop jar hadoop-mapreduce-examples-<ver>.jar wordcount -files dir1/dict.txt#dict1,dir2/dict.txt#dict2 -archives mytar.tgz#tgzdir input output

Here, the files dir1/dict.txt and dir2/dict.txt can be accessed by tasks using the symbolic names dict1 and dict2 respectively. The archive mytar.tgz will be placed and unarchived into a directory by the name “tgzdir”.

Applications can specify environment variables for mapper, reducer, and application master tasks by specifying them on the command line using the options -Dmapreduce.map.env, -Dmapreduce.reduce.env, and -Dyarn.app.mapreduce.am.env, respectively.

For example the following sets environment variables FOO_VAR=bar and LIST_VAR=a,b,c for the mappers and reducers,

bin/hadoop jar hadoop-mapreduce-examples-<ver>.jar wordcount -Dmapreduce.map.env.FOO_VAR=bar -Dmapreduce.map.env.LIST_VAR=a,b,c -Dmapreduce.reduce.env.FOO_VAR=bar -Dmapreduce.reduce.env.LIST_VAR=a,b,c input output

Walk-through

The WordCount application is quite straight-forward.

public void map(Object key, Text value, Context context
                ) throws IOException, InterruptedException {
  StringTokenizer itr = new StringTokenizer(value.toString());
  while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word, one);
  }
}

The Mapper implementation, via the map method, processes one line at a time, as provided by the specified TextInputFormat. It then splits the line into tokens separated by whitespaces, via the StringTokenizer, and emits a key-value pair of < <word>, 1>.

For the given sample input the first map emits:

< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

The second map emits:

< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

We’ll learn more about the number of maps spawned for a given job, and how to control them in a fine-grained manner, a bit later in the tutorial.

    job.setCombinerClass(IntSumReducer.class);

WordCount also specifies a combiner. Hence, the output of each map is passed through the local combiner (which is same as the Reducer as per the job configuration) for local aggregation, after being sorted on the keys.

The output of the first map:

< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:

< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>
public void reduce(Text key, Iterable<IntWritable> values,
                   Context context
                   ) throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
    sum += val.get();
  }
  result.set(sum);
  context.write(key, result);
}

The Reducer implementation, via the reduce method just sums up the values, which are the occurrence counts for each key (i.e. words in this example).

Thus the output of the job is:

< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>

The main method specifies various facets of the job, such as the input/output paths (passed via the command line), key/value types, input/output formats etc., in the Job. It then calls the job.waitForCompletion to submit the job and monitor its progress.

We’ll learn more about Job, InputFormat, OutputFormat and other interfaces and classes a bit later in the tutorial.

MapReduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the MapReduce framework. This should help users implement, configure and tune their jobs in a fine-grained manner. However, please note that the javadoc for each class/interface remains the most comprehensive documentation available; this is only meant to be a tutorial.

Let us first take the Mapper and Reducer interfaces. Applications typically implement them to provide the map and reduce methods.

We will then discuss other core interfaces including Job, Partitioner, InputFormat, OutputFormat, and others.

Finally, we will wrap up by discussing some useful features of the framework such as the DistributedCache, IsolationRunner etc.

Payload

Applications typically implement the Mapper and Reducer interfaces to provide the map and reduce methods. These form the core of the job.

Click here to read more about Loan/Mortgage
Click here to read more about Insurance

Related questions

Madanswer
Sep 7, 2019 in Big Data | Hadoop
Oct 12, 2019 in Big Data | Hadoop
Oct 12, 2019 in Big Data | Hadoop
...